Craft The World Wiki

The Overworld is composed of a large number of terrain patterns, called structures, whose arrangement varies widely from one seed to another. The exact structures are unique to each world, while the types of structures that can be generated at a given place are determined by the biome type.

A US Army (Lighter Air Cushion Vehicle - 30 Ton) hovercraft transports ground support equipment to shore in 1986A hovercraft, also known as an air-cushion vehicle or ACV, is an amphibious capable of travelling over land, water, mud, ice, and other surfaces.Hovercraft use blowers to produce a large volume of air below the hull, or air cushion, that is slightly above atmospheric pressure. The pressure difference between the higher pressure air below the hull and lower pressure ambient air above it produces lift, which causes the hull to float above the running surface. For stability reasons, the air is typically blown through slots or holes around the outside of a disk- or oval-shaped platform, giving most hovercraft a characteristic rounded-rectangle shape. Typically this cushion is contained within a flexible 'skirt', which allows the vehicle to travel over small obstructions without damage. The same hovercraft with engine on and skirt inflatedThe first practical design for hovercraft was derived from a British invention in the 1950s to 1960s. They are now used throughout the world as specialised transports in disaster relief, coastguard, military and survey applications, as well as for sport or passenger service. Very large versions have been used to transport hundreds of people and vehicles across the, whilst others have military applications used to transport tanks, soldiers and large equipment in hostile environments and terrain.Although now a generic term for the type of craft, the name Hovercraft itself was a owned by (later (BHC), then ), hence other manufacturers' use of alternative names to describe the vehicles.Often referred to in the plural as 'Hovercrafts', the correct plural is 'Hovercraft' (in the same manner that 'aircraft' is both singular and plural).

Contents.History Early efforts There have been many attempts to understand the principles of high air pressure below hulls and wings. Hovercraft are unique in that they can lift themselves while still, differing from and which require forward motion to create lift.The first mention in the historical record of the concepts behind surface-effect vehicles that used the term hovering was by Swedish scientist in 1716.The shipbuilder Sir patented an early design for an air cushion ship / hovercraft in the 1870s, but suitable, powerful, engines were not available until the 20th century.In 1915, the Austrian (1880–1956) built the world's first 'air cushion' boat ( Luftkissengleitboot). Shaped like a section of a large (this creates a low pressure area above the wing much like an aircraft), the craft was propelled by four aero engines driving two submerged marine propellers, with a fifth engine that blew air under the front of the craft to increase the air pressure under it. Only when in motion could the craft trap air under the front, increasing lift. The vessel also required a depth of water to operate and could not transition to land or other surfaces. Designed as a fast, the Versuchsgleitboot had a top speed over 32 (59 km/h).

It was thoroughly tested and even armed with torpedoes and machine guns for operation in the. It never saw actual combat, however, and as the war progressed it was eventually scrapped due to the lack of interest and perceived need, and its engines returned to the air force.The theoretical grounds for motion over an air layer were constructed by in 1926 and 1927.In 1929, Andrew Kucher of began experimenting with the Levapad concept, metal disks with pressurized air blown through a hole in the center.

Levapads do not offer stability on their own. Several must be used together to support a load above them.

Lacking a skirt, the pads had to remain very close to the running surface. He initially imagined these being used in place of and wheels in factories and warehouses, where the concrete floors offered the smoothness required for operation. By the 1950s, Ford showed a number of toy models of cars using the system, but mainly proposed its use as a replacement for wheels on trains, with the Levapads running close to the surface of existing rails. General arrangementThis lack of military interest meant that there was no reason to keep the concept secret, and it was declassified. Cockerell was finally able to convince the to fund development of a full-scale model. In 1958, the NRDC placed a contract with for the development of what would become the, short for 'Saunders-Roe, Nautical 1'.The SR.N1 was powered by a 450 hp engine powering a vertical fan in the middle of the craft. In addition to providing the lift air, a portion of the airflow was bled off into two channels on either side of the craft, which could be directed to provide thrust.

In normal operation this extra airflow was directed rearward for forward thrust, and blew over two large vertical rudders that provided directional control. For low-speed maneuverability, the extra thrust could be directed fore or aft, differentially for rotation.The SR.N1 made its first hover on 11 June 1959, and made its famed successful crossing of the English Channel on 25 July 1959. In December 1959, the visited Saunders-Roe at and persuaded the chief test-pilot, Commander Peter Lamb, to allow him to take over the SR.N1's controls. He flew the SR.N1 so fast that he was asked to slow down a little. On examination of the craft afterwards, it was found that she had been dished in the bow due to excessive speed, damage that was never allowed to be repaired, and was from then on affectionately referred to as the 'Royal Dent'. Skirts and other improvements Testing quickly demonstrated that the idea of using a single engine to provide air for both the lift curtain and forward flight required too many trade-offs. A turbojet for forward thrust and two large vertical rudders for directional control were added, producing the SR.N1 Mk II.

A further upgrade with the produced the Mk III. Further modifications, especially the addition of pointed nose and stern areas, produced the Mk IV.Although the SR.N1 was successful as a testbed, the design hovered too close to the surface to be practical; at 9 inches (23 cm) even small waves would hit the bow.

The solution was offered by, following a suggestion made by his business partner Arthur Ord-Hume. In 1958, he suggested the use of two rings of rubber to produce a double-walled extension of the vents in the lower fuselage.

When air was blown into the space between the sheets it exited the bottom of the skirt in the same way it formerly exited the bottom of the fuselage, re-creating the same momentum curtain, but this time at some distance from the bottom of the craft.Latimer-Needham and Cockerell devised a 4 feet (1.2 m) high skirt design, which was fitted to the SR.N1 to produce the Mk V, displaying hugely improved performance, with the ability to climb over obstacles almost as high as the skirt. In October 1961, Latimer-Needham sold his skirt patents to, who had recently taken over Saunders Roe's interest in the hovercraft.

Experiments with the skirt design demonstrated a problem; it was originally expected that pressure applied to the outside of the skirt would bend it inward, and the now-displaced airflow would cause it to pop back out. What actually happened is that the slight narrowing of the distance between the walls resulted in less airflow, which in turn led to more air loss under that section of the skirt. The fuselage above this area would drop due to the loss of lift at that point, and this led to further pressure on the skirt.After considerable experimentation, Denys Bliss at Hovercraft Development Ltd.

Found the solution to this problem. Instead of using two separate rubber sheets to form the skirt, a single sheet of rubber was bent into a U shape to provide both sides, with slots cut into the bottom of the U forming the annular vent.

When deforming pressure was applied to the outside of this design, air pressure in the rest of the skirt forced the inner wall to move in as well, keeping the channel open. Although there was some deformation of the curtain, the airflow within the skirt was maintained and the lift remained relatively steady.

Over time, this design evolved into individual extensions over the bottom of the slots in the skirt, known as 'fingers'. Passenger-carrying hovercraft, offshore from in Japan Commercialization Through these improvements, the hovercraft became an effective transport system for high-speed service on water and land, leading to widespread developments for military vehicles, search and rescue, and commercial operations. By 1962, many UK aviation and ship building firms were working on hovercraft designs, including Saunders Roe/,. Small-scale ferry service started as early as 1962 with the launch of the Vickers-Armstrong VA-3.

With the introduction of the 254 passenger and 30 car carrying cross-channel ferry by and in 1968, hovercraft had developed into useful commercial craft. Propellers. Air. Fan. Flexible skirtBy the early 1970s, the basic concept had been well developed, and the hovercraft had found a number of niche roles where its combination of features were advantageous.

Today, they are found primarily in military use for amphibious operations, search and rescue vehicles in shallow water, and sporting vehicles.Design Hovercraft can be powered by one or more engines. Small craft, such as the, usually have one engine with the drive split through a gearbox. On vehicles with several engines, one usually drives the fan (or ), which is responsible for lifting the vehicle by forcing high pressure air under the craft. The air inflates the 'skirt' under the vehicle, causing it to rise above the surface. Additional engines provide thrust in order to propel the craft. Some hovercraft use ducting to allow one engine to perform both tasks by directing some of the air to the skirt, the rest of the air passing out of the back to push the craft forward.Uses Commercial The British aircraft and marine engineering company Saunders-Roe built the first practical human-carrying hovercraft for the, the SR.N1, which carried out several test programmes in 1959 to 1961 (the first public demonstration was in 1959), including a cross-channel test run in July 1959, piloted by Peter 'Sheepy' Lamb, an ex-naval test pilot and the chief test pilot at Saunders Roe. Christopher Cockerell was on board, and the flight took place on the 50th anniversary of 's first aerial crossing.The SR.N1 was powered by a single piston engine, driven by expelled air.

Demonstrated at the in 1960, it was shown that this simple craft can carry a load of up to 12 with their equipment as well as the pilot and co-pilot with only a slight reduction in hover height proportional to the load carried. The SR.N1 did not have any skirt, using instead the peripheral air principle that Christopher had patented. It was later found that the craft's hover height was improved by the addition of a skirt of flexible fabric or rubber around the hovering surface to contain the air. The skirt was an independent invention made by a officer, who sold his idea to Westland (by then the parent of Saunders-Roe's helicopter and hovercraft interests), and who worked with Christopher to develop the idea further.The first passenger-carrying hovercraft to enter service was the, which, in the summer of 1962, carried passengers regularly along the north Wales coast from Moreton, Merseyside, to Rhyl.

It was powered by two aero-engines and driven. The service uses BHT130 between the Isle of Wight and mainland England, as of 2018, is the only public hovercraft service in the worldDuring the 1960s, Saunders-Roe developed several larger designs that could carry passengers, including the, which operated across the, in 1962, and later the, which operated across the Solent from to on the Isle of Wight for many years.

In 1963 the SR.N2 was used in experimental service between and under the aegis of P & A Campbell, the paddle steamer operators.Operations by commenced on 24 July 1965, using the SR.N6, which carried 38 passengers. Two 98 seat hovercraft were introduced on this route in 1983, and in 2007, these were joined by the first 130-seat craft. The AP1-88 and the BHT130 were notable as they were largely built by Hoverwork using shipbuilding techniques and materials (i.e. Welded aluminium structure and diesel engines) rather than the aircraft techniques used to build the earlier craft built by Saunders-Roe-British Hovercraft Corporation.

Over 20 million passengers had used the service as of 2004 – the service is still operating (as of 2020 ) and is by far the longest, continuously operated hovercraft service.In 1966, two cross-channel passenger hovercraft services were inaugurated using SR.N6 hovercraft. Ran services from Harbour, England, to, France, and also started a service to Calais from Dover, which was soon superseded by that of.As well as Saunders-Roe and Vickers (which combined in 1966 to form the British Hovercraft Corporation (BHC)), other commercial craft were developed during the 1960s in the UK by (part of the Group) and Hovermarine based at Woolston (the latter being, where the sides of the hull projected down into the water to trap the cushion of air with normal hovercraft skirts at the and ).

One of these models, the HM-2, was used by between Southampton (near the ). The Hoverlloyd craft Swift on the pad at Hoverport, 1973The world's first car-carrying hovercraft was made in 1968, the BHC (SR.N4) models, each powered by four engines. These were both used by rival operators and (joined to form in 1981) to operate regular car and passenger carrying services across the English Channel. Hoverlloyd operated from, where a special had been built at Pegwell Bay, to Calais.

Seaspeed operated from Dover, England, to Calais and in France. The first SR.N4 had a capacity of 254 passengers and 30 cars, and a top speed of 83 kn (154 km/h). The channel crossing took around 30 minutes and was run like an airline with flight numbers. The later SR.N4 Mk.III had a capacity of 418 passengers and 60 cars. These were later joined by the French-built SEDAM with a capacity of 385 passengers and 45 cars; only one entered service and was used intermittently for a few years on the cross-channel service until returned to in 1983.

The service ceased on 1 October 2000 after 32 years, due to competition with traditional ferries, the disappearance of duty-free shopping within the EU, the advancing age of the SR.N4 hovercraft and the opening of the.The commercial success of hovercraft suffered from rapid rises in fuel prices during the late 1960s and 1970s, following conflict in the Middle East. Alternative over-water vehicles, such as wave-piercing catamarans (marketed as the in the UK until 2005), use less fuel and can perform most of the hovercraft's marine tasks. Although developed elsewhere in the world for both civil and military purposes, except for the Ryde to Southsea crossing, hovercraft disappeared from the coastline of Britain until a range of were bought by the. A volunteer fire department in Bavaria using a hovercraft to practise a rescueused to ply between the in and and in between 1994 and 1999, but the services were subsequently stopped due to the lack of sufficient. Civilian non-commercial In Finland, small hovercraft are widely used in maritime rescue and during the ('mud season') as liaison vehicles. In England, hovercraft of the Area Rescue Boat (BARB) are used to rescue people from thick mud in.

Then, save and share your creations with all of your friends!Our slime games let you make magical goop from scratch! Color tunnel crazy games online. Put on your mad scientist hat, and learn how to craft batches of ooze. Try all sorts of wacky hats, wigs, and accessories.

Became the first Local Authority fire service in the UK to operate a hovercraft. It is used to rescue people from thick mud in the area and during times of inland flooding. A Griffon rescue Hovercraft has been in use for a number of years with the Airport Fire Service at Dundee Airport in Scotland. It is used in the event of an aircraft ditching in the Tay estuary.

Numerous fire departments around the US/Canadian Great Lakes operate hovercraft for water and ice rescues, often of ice fisherman stranded when ice breaks off from shore. The Canadian Coast Guard uses hovercraft to break light ice. Civilian Caiman-10 hovercraft for fishing and huntingIn October 2008, The Red Cross commenced a flood-rescue service hovercraft based in, Scotland. Received two flood-rescue hovercraft donated by following the.Since 2006, hovercraft have been used in aid in Madagascar by HoverAid, an international NGO who use the hovercraft to reach the most remote places on the island.The Scandinavian airline used to an AP1-88 hovercraft for regular passengers between, Denmark, and the SAS Hovercraft in, Sweden.In 1998, the US Postal Service began using the British built to haul mail, freight, and passengers from, to and from eight small villages along the. Bethel is far removed from the Alaska road system, thus making the hovercraft an attractive alternative to the air based delivery methods used prior to introduction of the hovercraft service. Hovercraft service is suspended for several weeks each year while the river is beginning to freeze to minimize damage to the river ice surface.

The hovercraft is able to operate during the freeze-up period; however, this could potentially break the ice and create hazards for villagers using their snowmobiles along the river during the early winter. Hivus-10 hovercraft on Taimyr peninsula in April 2013In 2006, Kvichak Marine Industries of, US built, under license, a cargo/passenger version of the Hoverwork.

Designated 'Suna-X', it is used as a high speed ferry for up to 47 passengers and 47,500 pounds (21,500 kg) of freight serving the remote Alaskan villages of and.An experimental service was operated in Scotland across the (between and ), from 16 to 28 July 2007. Marketed as Forthfast, the service used a craft chartered from and achieved an 85%. As of 2009, the possibility of establishing a permanent service is still under consideration.Since the channel routes abandoned hovercraft, and pending any reintroduction on the Scottish route, the United Kingdom's only public hovercraft service is that operated by between and on the.From the 1960s, several commercial lines were operated in Japan, without much success.

In Japan the last commercial line had linked and central but was shut down in October 2009. A Landing Craft, an example of a large armed military hovercraftHovercraft are still manufactured in the UK, near to where they were first conceived and tested, on the Isle of Wight. They can also be chartered for a wide variety of uses including inspections of shallow bed offshore wind farms and VIP or passenger use.

A typical vessel would be a Tiger IV or a Griffon. They are light, fast, road transportable and very adaptable with the unique feature of minimising damage to environments.Military.

See also:First applications of the hovercraft in military use was with the SR.N1 through SR.N6 craft built by Saunders-Roe in the Isle of Wight in the UK and used by the UK joint forces. To test the use of the hovercraft in military applications the UK set up the Interservice Hovercraft Trials Unit (IHTU) base at (now the site of the ). This unit carried out trials on the SR.N1 from Mk1 through Mk5 as well as testing the, and craft.

Currently, the use the hovercraft, the replacement for the Griffon 2000 TDX Class ACV as a tactical craft. The 2000 was deployed by the UK in Iraq.

The hovercraft's inventor, Sir, claimed late in his life that the could have been won far more easily had the British military shown more interest in hovercraft. Patrol air cushion vehicle (PACV) in Cau Hai Bay near Hue South Vietnam 1968.In the US, during the 1960s, licensed and sold the Saunders-Roe SR.N5 as the Bell SK-5.

They were deployed on trial to the by the as in the where their and was unique. This was used in both the UK SR.N5 curved configuration and later with modified flat deck, and designated the 9255 PACV.

The United States Army also experimented with the use of SR.N5 hovercraft in Vietnam. Three hovercraft with the flat deck configuration were deployed to in the Mekong Delta region and later to Ben Luc. They saw action primarily in the.

One was destroyed in early 1970 and another in August of that same year, after which the unit was disbanded. The only remaining U.S.

Army SR.N5 hovercraft is currently on display in the in. Experience led to the proposed Bell SK-10, which was the basis for the now deployed by the U.S. And Japanese Navy. Developed and tested in the mid-1970s, the was used by the US Army to transport military cargo in logistics-over-the-shore operations from the early 1980s thru the mid 1990s.The was the world's largest developer of military hovercraft.

Their designs range from the small, comparable to the SR.N6, to the monstrous, the world's largest hovercraft. The Soviet Union was also one of the first to use a hovercraft, the, as a, though this craft possessed rigid, non-inflatable sides.

With the fall of the Soviet Union, most Soviet military hovercraft fell into disuse and disrepair. Only recently has the modern begun building new classes of military hovercraft.The operates multiple British made and some Iranian produced hovercraft. The or Thunderbolt comes in varieties designed for combat and transportation. Iran has equipped the with mid-range missiles, machine guns and retrievable reconnaissance drones. Currently they are used for water patrols and combat against drug smugglers.The designed an experimental missile attack hovercraft class, in the late 1990s. The prototype of the class, Tuuli, was commissioned in 2000. It proved an extremely successful design for a fast attack craft, but due to fiscal reasons and doctrinal change in the Navy, the hovercraft was soon withdrawn.The People's Army Navy of operates the.

This troop and equipment carrying hovercraft is roughly the Chinese equivalent of the U.S. Navy.Recreational/sport Small commercially manufactured, kit or plan-built hovercraft are increasingly being used for recreational purposes, such as inland racing and cruising on inland lakes and rivers, marshy areas, estuaries and inshore coastal waters.The Hovercraft Cruising Club supports the use of hovercraft for cruising in coastal and inland waterways, lakes and lochs.The, founded in 1966, regularly organizes inland and coastal hovercraft race events at various venues across the United Kingdom. Single seater racing hovercraftIn August 2010, the Hovercraft Club of Great Britain hosted the World Hovercraft Championships at Towcester Racecourse The World Hovercraft Championships are run under the auspices of the World Hovercraft Federation. Similar events are also held in Europe and the US.Apart from the craft designed as 'racing hovercraft', which are often only suitable for racing, there is another form of small personal hovercraft for leisure use, often referred to as cruising hovercraft, capable of carrying up to four people. Just like their full size counterparts, the ability of these small personal hovercraft to safely cross all types of terrain, (e.g. Water, sandbanks, swamps, ice, etc.) and reach places often inaccessible by any other type of craft, makes them suitable for a number of roles, such as survey work and patrol and rescue duties in addition to personal leisure use. Increasingly, these craft are being used as yacht tenders, enabling yacht owners and guests to travel from a waiting yacht to, for example, a secluded beach.

In this role, small hovercraft can offer a more entertaining alternative to the usual small boat and can be a rival for the jet-ski. The excitement of a personal hovercraft can now be enjoyed at 'experience days', which are popular with families, friends and those in business, who often see them as team building exercises.

This level of interest has naturally led to a hovercraft rental sector and numerous manufacturers of small, ready built designs of personal hovercraft to serve the need. Other uses Hoverbarge A real benefit of air cushion vehicles in moving heavy loads over difficult terrain, such as swamps, was overlooked by the excitement of the British Government funding to develop high-speed hovercraft. It was not until the early 1970s that the technology was used for moving a modular marine barge with a dragline on board for use over soft reclaimed land.Mackace (Mackley Air Cushion Equipment), now known as Hovertrans, produced a number of successful Hoverbarges, such as the 250 ton payload 'Sea Pearl', which operated in Abu Dhabi, and the twin 160 ton payload 'Yukon Princesses', which ferried trucks across the Yukon River to aid the pipeline build.

Hoverbarges are still in operation today. In 2006, Hovertrans (formed by the original managers of Mackace) launched a 330-ton payload drilling barge in the swamps of Suriname.The Hoverbarge technology is somewhat different from high-speed hovercraft, which has traditionally been constructed using aircraft technology.

The initial concept of the air cushion barge has always been to provide a low-tech amphibious solution for accessing construction sites using typical equipment found in this area, such as diesel engines, ventilating fans, winches and marine equipment. The load to move a 200 ton payload ACV barge at 5 kn (9.3 km/h) would only be 5 tons. The skirt and air distribution design on high-speed craft again is more complex, as they have to cope with the air cushion being washed out by a wave and wave impact. The slow speed and large mono chamber of the hover barge actually helps reduce the effect of wave action, giving a very smooth ride.The low pull force enabled a to pull a hoverbarge across snow, ice and water in 1982. Hovertrains. Main article:Several attempts have been made to adopt air cushion technology for use in fixed track systems, in order to utilize the lower frictional forces for delivering high speeds.

The most advanced example of this was the, an experimental high speed built and operated in between 1965 and 1977. The project was abandoned in 1977 due to lack of funding, the death of its lead engineer and the adoption of the by the French government as its high-speed ground transport solution.A test track for a tracked hovercraft system was built at near,. It ran southwest from, sandwiched between the and the smaller Counter Drain to the west. Careful examination of the site will still reveal traces of the concrete piers used to support the structure.

The actual vehicle, RTV31, is preserved at in and can be seen from trains, just south west of. The vehicle achieved 104 mph (167 km/h) on 7 February 1973 but the project was cancelled a week later. Nhl 2001 draft. The project was managed by Tracked Hovercraft Ltd., with Denys Bliss as Director in the early 1970s, then axed by the Aerospace Minister,. Records of this project are available from the correspondence and papers of at Leeds University Library. Heseltine was accused by and others of misleading the House of Commons when he stated that the government was still considering giving financial support to the Hovertrain, when the decision to pull the plug had already been taken by the Cabinet.After the Cambridge project was abandoned due to financial constraints, parts of the project were picked up by the engineering firm, and abandoned in the mid-1980s. The Tracked Hovercraft project and system were contemporaneous, and there was intense competition between the two prospective British systems for funding and credibility.At the other end of the speed spectrum, the has been in continuous operation since 1985. This is an unusual underground air cushion system, situated in the Austrian of.

Only 1,280 m (4,200 ft) long, the line reaches a maximum speed of 25 mph (40 km/h). A also exists in near Tokyo, Japan.In the late 1960s and early 1970s, the U.S. Department of Transport's funded several hovertrain projects, which were known as Tracked Air Cushion Vehicles or TACVs. They were also known as Aerotrains since one of the builders had a licence from Bertin's Aerotrain company.

Three separate projects were funded. Research and development was carried out by,. The UMTA built an extensive test site in, with different types of tracks for the different technologies used by the prototype contractors. They managed to build prototypes and do a few test runs before the funding was cut.Non-transportation The was a spherical canister-type notable for its lack of wheels. Floating on a cushion of air, it was a hovercraft. They were not especially good as vacuum cleaners as the air escaping from under the cushion blew uncollected dust in all directions, nor as hovercraft as their lack of a skirt meant that they only hovered effectively over a smooth surface.

Despite this, original Constellations are sought-after today.The is an air-cushion that uses a fan on the cutter blade to provide lift. This allows it to be moved in any direction, and provides double-duty as a mulcher.The owns a 'hover cover' that it uses regularly to cover the pitch at. This device is easy and quick to move, and has no pressure points, making damage to the pitch less likely. The system is quite popular at major pitches in the UK.

Preservation , Hampshire, England, is the home of the, which houses the world's largest collection of hovercraft designs, including some of the earliest and largest. Much of the collection is housed within the retired hovercraft Princess Anne. She is the last of her kind in the world.There are many hovercraft in the museum but all are non-operational.Hovercraft are still in use between Ryde on the Isle of Wight and Southsea on the mainland. The service, operated by, schedules up to three crossings each hour, and is the fastest way of getting on or off the island. Large passenger hovercraft are still manufactured on the Isle of Wight.Records. Hovercraft parked on foreshore in,.

World's Largest Civil Hovercraft - The BHC Mk.III, at 56.4 m (185 ft) length and 310 metric tons (305 long tons) weight, can accommodate 418 passengers and 60 cars. World's largest military hovercraft - The Russian at 57.6 meters (188 feet) length and a maximum displacement of 535 tons.

This hovercraft can transport three (MBT), 140 fully equipped troops, or up to 130 tons of cargo. Four have been purchased by the. crossing - 22 minutes by Princess Anne SR.N4 Mk.III on 14 September 1995. World Hovercraft Speed Record - 137.4 km/h (85.38 mph or 74.19 knots).

Bob Windt (USA) at World Hovercraft Championships, Rio Douro River, Peso de Regua, Portugal on 18 September 1995. Hovercraft land speed record - 56.25 mph (90.53 km/h or 48.88 knots).

John Alford (USA) at Bonneville Salt Flats, Utah, USA on 21 September 1998. Longest continuous use - The original prototype (009) was in service for over 20 years, and logged a remarkable 22,000 hours of use. It is currently on display at the in,.See also.

The crafting matCrafting is a gameplay feature where new can be created by combining crafting. To craft an item, place the item's necessary components in the middle of the by right-clicking each item individually. When done with the right items, a gear will appear below the items in the inventory. Right-clicking this gear will create the desired item, which can be put into the inventory by right-clicking it again.For example, to craft a, place and on the crafting mat in the center of the inventory. When the gear appears (It will appear instantly if done correctly), right-click it, and then right-click the Molotov that appears in place of the Cloth and Booze.A full list of all the available crafting materials that are in the game so far can be found. Contents.Printable Crafting GuideThis is an A4, single page, black and white printing guide available to be printed out.WeaponsThe is a melee weapon that can be crafted by the player. Can be found strewn across the forest floor or can be acquired from cutting down.

Can be found strewn across the forest floor and the beach. Can be found in villages,.

Craft

Can also been seen carrying this crafted axes, the weapon can be obtained after killing them.